1.  Gharraee, Behrad: Numerical Simulation of Cavitation on a Tidal Turbine using ReFRESCO. Chalmers University of Technology, 2016. (Type: Masters Thesis  Abstract  Links  BibTeX) @mastersthesis{2016Msc_Thesis_Gharraee, title = {Numerical Simulation of Cavitation on a Tidal Turbine using ReFRESCO}, author = {Behrad Gharraee}, url = { http://www.refresco.org/download/2016msc_thesis_gharraeepdf/}, year = {2016}, date = {20160104}, address = {Gothenburg}, school = {Chalmers University of Technology}, abstract = {As renewable energies continue to grow their share in the global energy landscape, marine resources present an inexhaustible potential to provide the ever increasing human settlements energy demands. Tidal energy conversion technologies enjoy the benefits of the accurately predictable and highly reliable resources, while promising great power to weight ratio due to the relatively small size of the equipment compared with offshore wind for instance. There are various prototypes being tested today and some proposals are employing floating structures as the platform for the energy converters, the design of which is driven by the higher kinetic energy content of the streams close to the water surface. Such concepts increase the turbines susceptibility to cavitation. There has been very little explicit research performed on the cavitation behavior of tidal turbines and this thesis attempts to establish one such study to enable and promote future investigations. The specialized hydrodynamic RANS solver ReFRESCO is used with the builtin Sauer cavitation model. Structured grids have been employed. The effectiveness of an eddyviscosity modification method known as the Reboud correction is also subject of investigation for improving dynamic behavior of cavities. Two different turbulence models used are kOmega SST (SST2003) and kskL. A threebladed model scale Horizontal Axis Tidal Turbine (HATT) is numerically simulated in openwater conditions in an attempt to reproduce previous EFD results from the University of Southampton, thus validating the numerical procedures in use. The simulations are performed through three stages where initially a steady solution is obtained, then the simulation becomes transient and finally the cavitation model is switched on. The results are validated against experiments via nondimensionalized parameters for thrust and torque, which prove satisfactory. General flow shows good agreement with experimental observations and the cavity formation appears to be accurate regarding both its position and blade coverage. Interestingly a cavity is observed near the leading edge on the pressure side. The simulations fail to resolve the details near the closure line of the sheet cavity which is attributed to inadequate meshing resolution. Very little dynamic behavior of the cavity structure is observed specifically where a "horseshoe" cavity structure had been detected during EFD, which will be subject to future work.}, keywords = {}, pubstate = {published}, tppubtype = {mastersthesis} } As renewable energies continue to grow their share in the global energy landscape, marine resources present an inexhaustible potential to provide the ever increasing human settlements energy demands. Tidal energy conversion technologies enjoy the benefits of the accurately predictable and highly reliable resources, while promising great power to weight ratio due to the relatively small size of the equipment compared with offshore wind for instance. There are various prototypes being tested today and some proposals are employing floating structures as the platform for the energy converters, the design of which is driven by the higher kinetic energy content of the streams close to the water surface. Such concepts increase the turbines susceptibility to cavitation. There has been very little explicit research performed on the cavitation behavior of tidal turbines and this thesis attempts to establish one such study to enable and promote future investigations. The specialized hydrodynamic RANS solver ReFRESCO is used with the builtin Sauer cavitation model. Structured grids have been employed. The effectiveness of an eddyviscosity modification method known as the Reboud correction is also subject of investigation for improving dynamic behavior of cavities. Two different turbulence models used are kOmega SST (SST2003) and kskL. A threebladed model scale Horizontal Axis Tidal Turbine (HATT) is numerically simulated in openwater conditions in an attempt to reproduce previous EFD results from the University of Southampton, thus validating the numerical procedures in use. The simulations are performed through three stages where initially a steady solution is obtained, then the simulation becomes transient and finally the cavitation model is switched on. The results are validated against experiments via nondimensionalized parameters for thrust and torque, which prove satisfactory. General flow shows good agreement with experimental observations and the cavity formation appears to be accurate regarding both its position and blade coverage. Interestingly a cavity is observed near the leading edge on the pressure side. The simulations fail to resolve the details near the closure line of the sheet cavity which is attributed to inadequate meshing resolution. Very little dynamic behavior of the cavity structure is observed specifically where a "horseshoe" cavity structure had been detected during EFD, which will be subject to future work. 
2.  Otto, William; Rijpkema, Douwe; Vaz, Guilherme: VISCOUSFLOW CALCULATIONS ON AN AXIAL MARINE CURRENT TURBINE. OMAE2012 Rio de Janeiro, Brasil, 2012. (Type: Conference  Abstract  Links  BibTeX) @conference{2012OMAE83452_Otto&Rijpkema&Vaz_Turbines, title = {VISCOUSFLOW CALCULATIONS ON AN AXIAL MARINE CURRENT TURBINE}, author = {William Otto and Douwe Rijpkema and Guilherme Vaz}, url = {http://www.refresco.org/download/2012omae83452_ottorijpkemavaz_turbines/}, year = {2012}, date = {20120701}, address = {Rio de Janeiro, Brasil}, organization = {OMAE2012}, abstract = {In this paper, the flow over a marine current turbine is studied. As a test case, the benchmark turbine published by Bahaj et al. is selected. A bibliography review shows a variety of numerical methods applied to this specific turbine, of which a viscousflow RANS approach seems to be the best suitable for simulations over a broad range of inflow conditions. Therefore, MARIN’s RANS solver ReFRESCO is used to study the flow over this turbine. ReFRESCO results show a good agreement with the experiments, the calculated results and associated uncertainties overlapping the modeltests results. A numerical procedure is followed to estimate these calculation uncertainties, including an estimation for the numerical, domain and geometrical uncertainties. The flowfield analysis reveals significant viscous effects. Large separation zones at the suction side of the blade are seen in the modelscale results. At model scale, the turbulence level indicates that the turbine is operating in the transitional regime between laminar and turbulent flow, leading to early flow separation. Calculations at full scale show a large scale effect. The separation zones present at model scale are significantly smaller at full scale, resulting in a higher power production and axial loading. This is explained by the different boundarylayer regimes at model scale (partiallylaminar) and at full scale (fullyturbulent).}, keywords = {}, pubstate = {published}, tppubtype = {conference} } In this paper, the flow over a marine current turbine is studied. As a test case, the benchmark turbine published by Bahaj et al. is selected. A bibliography review shows a variety of numerical methods applied to this specific turbine, of which a viscousflow RANS approach seems to be the best suitable for simulations over a broad range of inflow conditions. Therefore, MARIN’s RANS solver ReFRESCO is used to study the flow over this turbine. ReFRESCO results show a good agreement with the experiments, the calculated results and associated uncertainties overlapping the modeltests results. A numerical procedure is followed to estimate these calculation uncertainties, including an estimation for the numerical, domain and geometrical uncertainties. The flowfield analysis reveals significant viscous effects. Large separation zones at the suction side of the blade are seen in the modelscale results. At model scale, the turbulence level indicates that the turbine is operating in the transitional regime between laminar and turbulent flow, leading to early flow separation. Calculations at full scale show a large scale effect. The separation zones present at model scale are significantly smaller at full scale, resulting in a higher power production and axial loading. This is explained by the different boundarylayer regimes at model scale (partiallylaminar) and at full scale (fullyturbulent). 
3.  Otto, William: NUMERICAL SIMULATIONS OF FLOW OVER AN AXIAL MARINE CURRENT TURBINE. Technical University of Delft, the Netherlands, 2011. (Type: Masters Thesis  Abstract  Links  BibTeX) @mastersthesis{2011Msc_Thesis_WilliamOtto, title = {NUMERICAL SIMULATIONS OF FLOW OVER AN AXIAL MARINE CURRENT TURBINE}, author = {William Otto}, url = {http://www.refresco.org/?wpdmpro=2011msc_thesis_williamottopdf}, year = {2011}, date = {20111011}, school = {Technical University of Delft, the Netherlands}, abstract = {The main objective of this Msc. thesis is to obtain and analyze numerical simulations of singlephase flow over an axial marine current turbine. A wide range of operating conditions is simulated. Great attention is paid to verification, validation and uncertainty analysis. As benchmark, a reference turbine with experimental data is used which is found in literature (A.S. Bahaj and W.M.J. Batten, 2005 [17]). The simulations were performed at model scale and scale effects were studied by using the same geometry at full scale Reynolds numbers. This thesis is limited to single phase flows, what means that cavitation and free surface effects are deliberately excluded. Only a uniform inflow is modeled and interaction between the turbine and other objects as walls, floors, mounting rigs or other turbines are not taken into account (’open water condition’). Because these aspects can play a significant roll in practical applications, the numerical method is chosen such that they can be implemented in future work, once verified and validated simulations of noninteracting, singlephase flow have been obtained. Because its ability to include the aforementioned effects, as well its the ability to study scale effects, the MARIN inhouse RANS solver ReFRESCO is used for the simulations. A geometrical description of the reference turbine was received from the original authors. This geometry is modified in order to obtain feasible calculations. First, the trailing edge had to be thickened in order to avoid troubles in the grid generation. Second, a new connection has been constructed between the blades and the hub. The original connection causes an unsteady wake which elongates the calculation time to weeks. With a new constructed blade to hub connection, the flow is less complex, reducing the calculation time to a couple of days per condition. The modeling error caused by the thickened trailing edge is studied by using two dimensional RANS calculations over a radial section of the turbine (r=R = 0:7). It is estimated that the sectional lift is reduced by 3.78% due to the thickened trailing edge. Also an increase in drag is obtained, which is estimated as 6.35%. The turbine power and axial loading is corrected for this effect. The modified blade to hub connection is taken into account as an additional uncertainty in the solutions. A verification and validation procedure is performed to estimate the numerical and modeling uncertainties. The largest component of the numerical uncertainty is the discretization error. This error is hard to quantify due to: 1) the unstructured grid approach what makes it hard to produce a series of geometrical similar grids, 2) the small refinement range limited by the available memory resources. Therefore, a conservative estimation is made by using a safety factor. The numerical uncertainty is estimated as U = 3:6% for the power coefficient CP and U = 4:8% for the axial loading coefficient CT . A cylindrical computational domain is used to represent the open water condition. Initially, the domain size was 8 turbine diameter wide in radial direction. Later it proved that this domain was too small to fully represent an undisturbed flow without (numerical) blockage effects. By systematically increasing the domain size, it is estimated that the modeling error caused by the too small domain is Udomain = 0:5% for CP and Udomain = 2:6% for CT . The calculation results at model scale (Re = 1:4 105) show a very good similarity with the experimental results for the power production as well as the axial loading. Due to the scatter in the experiments, it is not possible to follow an official validation procedure. The flow analysis at model scale shows a large area of laminar flow separation at the suction side of the blades. It can be said that the blades are in stall for a large part. The turbulence intensity shows the boundary layer at the blade is in the transitional region. Roughly half of the chord length has a laminar boundary layer, the second half is turbulent. The stall can be caused by the laminar boundary layer, what makes it a scale effect. The flow analysis at full scale Reynolds numbers Re = 5 106 does not show the large separation areas. A fully turbulent boundary layer is obtained and the flow stays to a great extend attached to the blade. As a consequence, the obtained axial loading and power coefficient is more than 10% higher than at model scale. This is a significant scale effect where designers of marine current turbines should be aware of.}, keywords = {}, pubstate = {published}, tppubtype = {mastersthesis} } The main objective of this Msc. thesis is to obtain and analyze numerical simulations of singlephase flow over an axial marine current turbine. A wide range of operating conditions is simulated. Great attention is paid to verification, validation and uncertainty analysis. As benchmark, a reference turbine with experimental data is used which is found in literature (A.S. Bahaj and W.M.J. Batten, 2005 [17]). The simulations were performed at model scale and scale effects were studied by using the same geometry at full scale Reynolds numbers. This thesis is limited to single phase flows, what means that cavitation and free surface effects are deliberately excluded. Only a uniform inflow is modeled and interaction between the turbine and other objects as walls, floors, mounting rigs or other turbines are not taken into account (’open water condition’). Because these aspects can play a significant roll in practical applications, the numerical method is chosen such that they can be implemented in future work, once verified and validated simulations of noninteracting, singlephase flow have been obtained. Because its ability to include the aforementioned effects, as well its the ability to study scale effects, the MARIN inhouse RANS solver ReFRESCO is used for the simulations. A geometrical description of the reference turbine was received from the original authors. This geometry is modified in order to obtain feasible calculations. First, the trailing edge had to be thickened in order to avoid troubles in the grid generation. Second, a new connection has been constructed between the blades and the hub. The original connection causes an unsteady wake which elongates the calculation time to weeks. With a new constructed blade to hub connection, the flow is less complex, reducing the calculation time to a couple of days per condition. The modeling error caused by the thickened trailing edge is studied by using two dimensional RANS calculations over a radial section of the turbine (r=R = 0:7). It is estimated that the sectional lift is reduced by 3.78% due to the thickened trailing edge. Also an increase in drag is obtained, which is estimated as 6.35%. The turbine power and axial loading is corrected for this effect. The modified blade to hub connection is taken into account as an additional uncertainty in the solutions. A verification and validation procedure is performed to estimate the numerical and modeling uncertainties. The largest component of the numerical uncertainty is the discretization error. This error is hard to quantify due to: 1) the unstructured grid approach what makes it hard to produce a series of geometrical similar grids, 2) the small refinement range limited by the available memory resources. Therefore, a conservative estimation is made by using a safety factor. The numerical uncertainty is estimated as U = 3:6% for the power coefficient CP and U = 4:8% for the axial loading coefficient CT . A cylindrical computational domain is used to represent the open water condition. Initially, the domain size was 8 turbine diameter wide in radial direction. Later it proved that this domain was too small to fully represent an undisturbed flow without (numerical) blockage effects. By systematically increasing the domain size, it is estimated that the modeling error caused by the too small domain is Udomain = 0:5% for CP and Udomain = 2:6% for CT . The calculation results at model scale (Re = 1:4 105) show a very good similarity with the experimental results for the power production as well as the axial loading. Due to the scatter in the experiments, it is not possible to follow an official validation procedure. The flow analysis at model scale shows a large area of laminar flow separation at the suction side of the blades. It can be said that the blades are in stall for a large part. The turbulence intensity shows the boundary layer at the blade is in the transitional region. Roughly half of the chord length has a laminar boundary layer, the second half is turbulent. The stall can be caused by the laminar boundary layer, what makes it a scale effect. The flow analysis at full scale Reynolds numbers Re = 5 106 does not show the large separation areas. A fully turbulent boundary layer is obtained and the flow stays to a great extend attached to the blade. As a consequence, the obtained axial loading and power coefficient is more than 10% higher than at model scale. This is a significant scale effect where designers of marine current turbines should be aware of. 
2016 

Gharraee, Behrad Numerical Simulation of Cavitation on a Tidal Turbine using ReFRESCO Masters Thesis Chalmers University of Technology, 2016. Abstract  Links  BibTeX  Tags: Cavitation, Current Turbines, KSKL, RANS, SST, URANS, Verification @mastersthesis{2016Msc_Thesis_Gharraee, title = {Numerical Simulation of Cavitation on a Tidal Turbine using ReFRESCO}, author = {Behrad Gharraee}, url = { http://www.refresco.org/download/2016msc_thesis_gharraeepdf/}, year = {2016}, date = {20160104}, address = {Gothenburg}, school = {Chalmers University of Technology}, abstract = {As renewable energies continue to grow their share in the global energy landscape, marine resources present an inexhaustible potential to provide the ever increasing human settlements energy demands. Tidal energy conversion technologies enjoy the benefits of the accurately predictable and highly reliable resources, while promising great power to weight ratio due to the relatively small size of the equipment compared with offshore wind for instance. There are various prototypes being tested today and some proposals are employing floating structures as the platform for the energy converters, the design of which is driven by the higher kinetic energy content of the streams close to the water surface. Such concepts increase the turbines susceptibility to cavitation. There has been very little explicit research performed on the cavitation behavior of tidal turbines and this thesis attempts to establish one such study to enable and promote future investigations. The specialized hydrodynamic RANS solver ReFRESCO is used with the builtin Sauer cavitation model. Structured grids have been employed. The effectiveness of an eddyviscosity modification method known as the Reboud correction is also subject of investigation for improving dynamic behavior of cavities. Two different turbulence models used are kOmega SST (SST2003) and kskL. A threebladed model scale Horizontal Axis Tidal Turbine (HATT) is numerically simulated in openwater conditions in an attempt to reproduce previous EFD results from the University of Southampton, thus validating the numerical procedures in use. The simulations are performed through three stages where initially a steady solution is obtained, then the simulation becomes transient and finally the cavitation model is switched on. The results are validated against experiments via nondimensionalized parameters for thrust and torque, which prove satisfactory. General flow shows good agreement with experimental observations and the cavity formation appears to be accurate regarding both its position and blade coverage. Interestingly a cavity is observed near the leading edge on the pressure side. The simulations fail to resolve the details near the closure line of the sheet cavity which is attributed to inadequate meshing resolution. Very little dynamic behavior of the cavity structure is observed specifically where a "horseshoe" cavity structure had been detected during EFD, which will be subject to future work.}, keywords = {Cavitation, Current Turbines, KSKL, RANS, SST, URANS, Verification}, pubstate = {published}, tppubtype = {mastersthesis} } As renewable energies continue to grow their share in the global energy landscape, marine resources present an inexhaustible potential to provide the ever increasing human settlements energy demands. Tidal energy conversion technologies enjoy the benefits of the accurately predictable and highly reliable resources, while promising great power to weight ratio due to the relatively small size of the equipment compared with offshore wind for instance. There are various prototypes being tested today and some proposals are employing floating structures as the platform for the energy converters, the design of which is driven by the higher kinetic energy content of the streams close to the water surface. Such concepts increase the turbines susceptibility to cavitation. There has been very little explicit research performed on the cavitation behavior of tidal turbines and this thesis attempts to establish one such study to enable and promote future investigations. The specialized hydrodynamic RANS solver ReFRESCO is used with the builtin Sauer cavitation model. Structured grids have been employed. The effectiveness of an eddyviscosity modification method known as the Reboud correction is also subject of investigation for improving dynamic behavior of cavities. Two different turbulence models used are kOmega SST (SST2003) and kskL. A threebladed model scale Horizontal Axis Tidal Turbine (HATT) is numerically simulated in openwater conditions in an attempt to reproduce previous EFD results from the University of Southampton, thus validating the numerical procedures in use. The simulations are performed through three stages where initially a steady solution is obtained, then the simulation becomes transient and finally the cavitation model is switched on. The results are validated against experiments via nondimensionalized parameters for thrust and torque, which prove satisfactory. General flow shows good agreement with experimental observations and the cavity formation appears to be accurate regarding both its position and blade coverage. Interestingly a cavity is observed near the leading edge on the pressure side. The simulations fail to resolve the details near the closure line of the sheet cavity which is attributed to inadequate meshing resolution. Very little dynamic behavior of the cavity structure is observed specifically where a "horseshoe" cavity structure had been detected during EFD, which will be subject to future work.  
2012 

Otto, William; Rijpkema, Douwe; Vaz, Guilherme VISCOUSFLOW CALCULATIONS ON AN AXIAL MARINE CURRENT TURBINE Conference OMAE2012 Rio de Janeiro, Brasil, 2012. Abstract  Links  BibTeX  Tags: Viscous flow, axial, Current Turbines, marine @conference{2012OMAE83452_Otto&Rijpkema&Vaz_Turbines, title = {VISCOUSFLOW CALCULATIONS ON AN AXIAL MARINE CURRENT TURBINE}, author = {William Otto and Douwe Rijpkema and Guilherme Vaz}, url = {http://www.refresco.org/download/2012omae83452_ottorijpkemavaz_turbines/}, year = {2012}, date = {20120701}, address = {Rio de Janeiro, Brasil}, organization = {OMAE2012}, abstract = {In this paper, the flow over a marine current turbine is studied. As a test case, the benchmark turbine published by Bahaj et al. is selected. A bibliography review shows a variety of numerical methods applied to this specific turbine, of which a viscousflow RANS approach seems to be the best suitable for simulations over a broad range of inflow conditions. Therefore, MARIN’s RANS solver ReFRESCO is used to study the flow over this turbine. ReFRESCO results show a good agreement with the experiments, the calculated results and associated uncertainties overlapping the modeltests results. A numerical procedure is followed to estimate these calculation uncertainties, including an estimation for the numerical, domain and geometrical uncertainties. The flowfield analysis reveals significant viscous effects. Large separation zones at the suction side of the blade are seen in the modelscale results. At model scale, the turbulence level indicates that the turbine is operating in the transitional regime between laminar and turbulent flow, leading to early flow separation. Calculations at full scale show a large scale effect. The separation zones present at model scale are significantly smaller at full scale, resulting in a higher power production and axial loading. This is explained by the different boundarylayer regimes at model scale (partiallylaminar) and at full scale (fullyturbulent).}, keywords = { Viscous flow, axial, Current Turbines, marine}, pubstate = {published}, tppubtype = {conference} } In this paper, the flow over a marine current turbine is studied. As a test case, the benchmark turbine published by Bahaj et al. is selected. A bibliography review shows a variety of numerical methods applied to this specific turbine, of which a viscousflow RANS approach seems to be the best suitable for simulations over a broad range of inflow conditions. Therefore, MARIN’s RANS solver ReFRESCO is used to study the flow over this turbine. ReFRESCO results show a good agreement with the experiments, the calculated results and associated uncertainties overlapping the modeltests results. A numerical procedure is followed to estimate these calculation uncertainties, including an estimation for the numerical, domain and geometrical uncertainties. The flowfield analysis reveals significant viscous effects. Large separation zones at the suction side of the blade are seen in the modelscale results. At model scale, the turbulence level indicates that the turbine is operating in the transitional regime between laminar and turbulent flow, leading to early flow separation. Calculations at full scale show a large scale effect. The separation zones present at model scale are significantly smaller at full scale, resulting in a higher power production and axial loading. This is explained by the different boundarylayer regimes at model scale (partiallylaminar) and at full scale (fullyturbulent).  
2011 

Otto, William NUMERICAL SIMULATIONS OF FLOW OVER AN AXIAL MARINE CURRENT TURBINE Masters Thesis Technical University of Delft, the Netherlands, 2011. Abstract  Links  BibTeX  Tags: Current Turbines, RANS, SST, Turbines, URANS, Validation, Verification @mastersthesis{2011Msc_Thesis_WilliamOtto, title = {NUMERICAL SIMULATIONS OF FLOW OVER AN AXIAL MARINE CURRENT TURBINE}, author = {William Otto}, url = {http://www.refresco.org/?wpdmpro=2011msc_thesis_williamottopdf}, year = {2011}, date = {20111011}, school = {Technical University of Delft, the Netherlands}, abstract = {The main objective of this Msc. thesis is to obtain and analyze numerical simulations of singlephase flow over an axial marine current turbine. A wide range of operating conditions is simulated. Great attention is paid to verification, validation and uncertainty analysis. As benchmark, a reference turbine with experimental data is used which is found in literature (A.S. Bahaj and W.M.J. Batten, 2005 [17]). The simulations were performed at model scale and scale effects were studied by using the same geometry at full scale Reynolds numbers. This thesis is limited to single phase flows, what means that cavitation and free surface effects are deliberately excluded. Only a uniform inflow is modeled and interaction between the turbine and other objects as walls, floors, mounting rigs or other turbines are not taken into account (’open water condition’). Because these aspects can play a significant roll in practical applications, the numerical method is chosen such that they can be implemented in future work, once verified and validated simulations of noninteracting, singlephase flow have been obtained. Because its ability to include the aforementioned effects, as well its the ability to study scale effects, the MARIN inhouse RANS solver ReFRESCO is used for the simulations. A geometrical description of the reference turbine was received from the original authors. This geometry is modified in order to obtain feasible calculations. First, the trailing edge had to be thickened in order to avoid troubles in the grid generation. Second, a new connection has been constructed between the blades and the hub. The original connection causes an unsteady wake which elongates the calculation time to weeks. With a new constructed blade to hub connection, the flow is less complex, reducing the calculation time to a couple of days per condition. The modeling error caused by the thickened trailing edge is studied by using two dimensional RANS calculations over a radial section of the turbine (r=R = 0:7). It is estimated that the sectional lift is reduced by 3.78% due to the thickened trailing edge. Also an increase in drag is obtained, which is estimated as 6.35%. The turbine power and axial loading is corrected for this effect. The modified blade to hub connection is taken into account as an additional uncertainty in the solutions. A verification and validation procedure is performed to estimate the numerical and modeling uncertainties. The largest component of the numerical uncertainty is the discretization error. This error is hard to quantify due to: 1) the unstructured grid approach what makes it hard to produce a series of geometrical similar grids, 2) the small refinement range limited by the available memory resources. Therefore, a conservative estimation is made by using a safety factor. The numerical uncertainty is estimated as U = 3:6% for the power coefficient CP and U = 4:8% for the axial loading coefficient CT . A cylindrical computational domain is used to represent the open water condition. Initially, the domain size was 8 turbine diameter wide in radial direction. Later it proved that this domain was too small to fully represent an undisturbed flow without (numerical) blockage effects. By systematically increasing the domain size, it is estimated that the modeling error caused by the too small domain is Udomain = 0:5% for CP and Udomain = 2:6% for CT . The calculation results at model scale (Re = 1:4 105) show a very good similarity with the experimental results for the power production as well as the axial loading. Due to the scatter in the experiments, it is not possible to follow an official validation procedure. The flow analysis at model scale shows a large area of laminar flow separation at the suction side of the blades. It can be said that the blades are in stall for a large part. The turbulence intensity shows the boundary layer at the blade is in the transitional region. Roughly half of the chord length has a laminar boundary layer, the second half is turbulent. The stall can be caused by the laminar boundary layer, what makes it a scale effect. The flow analysis at full scale Reynolds numbers Re = 5 106 does not show the large separation areas. A fully turbulent boundary layer is obtained and the flow stays to a great extend attached to the blade. As a consequence, the obtained axial loading and power coefficient is more than 10% higher than at model scale. This is a significant scale effect where designers of marine current turbines should be aware of.}, keywords = {Current Turbines, RANS, SST, Turbines, URANS, Validation, Verification}, pubstate = {published}, tppubtype = {mastersthesis} } The main objective of this Msc. thesis is to obtain and analyze numerical simulations of singlephase flow over an axial marine current turbine. A wide range of operating conditions is simulated. Great attention is paid to verification, validation and uncertainty analysis. As benchmark, a reference turbine with experimental data is used which is found in literature (A.S. Bahaj and W.M.J. Batten, 2005 [17]). The simulations were performed at model scale and scale effects were studied by using the same geometry at full scale Reynolds numbers. This thesis is limited to single phase flows, what means that cavitation and free surface effects are deliberately excluded. Only a uniform inflow is modeled and interaction between the turbine and other objects as walls, floors, mounting rigs or other turbines are not taken into account (’open water condition’). Because these aspects can play a significant roll in practical applications, the numerical method is chosen such that they can be implemented in future work, once verified and validated simulations of noninteracting, singlephase flow have been obtained. Because its ability to include the aforementioned effects, as well its the ability to study scale effects, the MARIN inhouse RANS solver ReFRESCO is used for the simulations. A geometrical description of the reference turbine was received from the original authors. This geometry is modified in order to obtain feasible calculations. First, the trailing edge had to be thickened in order to avoid troubles in the grid generation. Second, a new connection has been constructed between the blades and the hub. The original connection causes an unsteady wake which elongates the calculation time to weeks. With a new constructed blade to hub connection, the flow is less complex, reducing the calculation time to a couple of days per condition. The modeling error caused by the thickened trailing edge is studied by using two dimensional RANS calculations over a radial section of the turbine (r=R = 0:7). It is estimated that the sectional lift is reduced by 3.78% due to the thickened trailing edge. Also an increase in drag is obtained, which is estimated as 6.35%. The turbine power and axial loading is corrected for this effect. The modified blade to hub connection is taken into account as an additional uncertainty in the solutions. A verification and validation procedure is performed to estimate the numerical and modeling uncertainties. The largest component of the numerical uncertainty is the discretization error. This error is hard to quantify due to: 1) the unstructured grid approach what makes it hard to produce a series of geometrical similar grids, 2) the small refinement range limited by the available memory resources. Therefore, a conservative estimation is made by using a safety factor. The numerical uncertainty is estimated as U = 3:6% for the power coefficient CP and U = 4:8% for the axial loading coefficient CT . A cylindrical computational domain is used to represent the open water condition. Initially, the domain size was 8 turbine diameter wide in radial direction. Later it proved that this domain was too small to fully represent an undisturbed flow without (numerical) blockage effects. By systematically increasing the domain size, it is estimated that the modeling error caused by the too small domain is Udomain = 0:5% for CP and Udomain = 2:6% for CT . The calculation results at model scale (Re = 1:4 105) show a very good similarity with the experimental results for the power production as well as the axial loading. Due to the scatter in the experiments, it is not possible to follow an official validation procedure. The flow analysis at model scale shows a large area of laminar flow separation at the suction side of the blades. It can be said that the blades are in stall for a large part. The turbulence intensity shows the boundary layer at the blade is in the transitional region. Roughly half of the chord length has a laminar boundary layer, the second half is turbulent. The stall can be caused by the laminar boundary layer, what makes it a scale effect. The flow analysis at full scale Reynolds numbers Re = 5 106 does not show the large separation areas. A fully turbulent boundary layer is obtained and the flow stays to a great extend attached to the blade. As a consequence, the obtained axial loading and power coefficient is more than 10% higher than at model scale. This is a significant scale effect where designers of marine current turbines should be aware of. 